THE PRINCIPAL SEMI-ALGEBRA IN A BANACH ALGEBRA(1)

BY EDWARD J. BARBEAU

INTRODUCTION

0.1. **Orientation.** A subset of a real linear associative algebra is called a semi-algebra iff it is a wedge [8, p. 20] closed under multiplication. The theory of such a structure has been developed principally by F. F. Bonsall, who originally considered semi-algebras of non-negative-valued functions, but later extended his research to include locally compact and convolution semi-algebras [1], [2], [3]. Independently, S. Bourne [6] defined semi-algebras and proved a representation theorem for a special class of them.

The present paper carries the study in a new direction. The question of determining maximal closed subalgebras of certain Banach algebras has received a great deal of attention (see, for example, [10]), but the corresponding problem for semi-algebras seems not to have been considered at all. That some interesting results might be obtained was suggested by the observation that, with real Euclidean 3-space considered naturally as a Banach algebra (operations defined pointwise), the solid $\{(x,y,z)\colon x,y,z\geq 0,\ z\leq x^{1/2}y^{1/2}\}$ is a maximal closed subsemi-algebra of the positive octant. I am grateful to Professor L. Nachbin, who, by conjecturing a possible generalization for continuous real-valued functions, led me into a deeper consideration of the problem, and to Professor F. F. Bonsall for his encouragement and supervision.

The setting for Chapter 1 is a real Banach algebra with multiplicative identity 1. The role of the positive octant in the above example is played by the principal semi-algebra, defined to be the least closed semi-algebra whose interior contains 1. A representation of this semi-algebra is given, along with some results and examples concerning its maximal closed subsemi-algebras. Chapter 2 deals with the particular Banach algebra of all continuous real-valued functions defined on a compact Hausdorff space, whose principal semi-algebra is the set of all its non-negative-valued functions. In this case, not only can all maximal

Received by the editors November 27, 1964.

⁽¹⁾ The results in this paper are contained in the author's doctoral thesis, prepared while he was a Commonwealth Scholar at the University of Newcastle-upon-Tyne in the United Kingdom.

closed subsemi-algebras of the principal semi-algebra be found, but a simple characterization of all their intersections can be given.

The paper which is probably most closely related to the results of Chapter 2 is one by W. B. Jurkat and G. G. Lorentz [11], which gives necessary and sufficient conditions involving simple geometric means that a pair of functions generate the uniformly closed semi-algebra of non-negative continuous functions on a compact Hausdorff space. It seems that it may be possible to obtain this result as part of the present theory. I note also that geometric means of functions have arisen in work by D. G. Bourgin [5] and J. F. C. Kingman [13].

The remainder of the introduction contains a list of results for later reference.

0.2. The geometric mean of a non-negative continuous function. Here, and throughout the paper, E denotes a compact Hausdorff space, C(E) the Banach algebra (with algebraic operations defined pointwise and the uniform norm) of all continuous real-valued functions defined on E, $C^+(E)$ the set of all non-negative functions in C(E) and $C^{\#}(E)$ the set of all those functions in C(E) which are everywhere strictly positive. Consider C(E) as being ordered with positive cone $C^+(E)$. See N. Bourbaki [4] for background in integration theory.

Let μ be a Radon probability measure on E (i.e. a positive measure of total mass 1). The geometric mean with weight μ , denoted by GM_{μ} , is defined on $C^+(E)$ by

$$GM_{\mu}f = \begin{cases} \exp \int \log f \, d\mu & \text{if } \log f \text{ is } \mu\text{-integrable} \\ 0 & \text{if } \log f \text{ is not } \mu\text{-integrable.} \end{cases}$$

(Note that $\log f$ may be an extended real-valued function.) For $f \in C^*(E)$, $\log f$ is μ -integrable and the first alternative of the definition is valid. Observe that, if the support of μ is a finite subset of E, then $GM_{\mu}f$ is expressible as a finite product.

 GM_{μ} is a non-negative monotone function on $C^{+}(E)$ with the following properties (where $f, g \in C^{+}(E), \lambda \ge 0$):

- (a) $GM_{\mu}\lambda = \lambda$;
- (b) $\lim_{\lambda \to 0^+} GM_{\mu}(f + \lambda g) = GM_{\mu}f$;
- (c) $0 \le GM_{\mu}f \le \mu(f) \le ||f||;$
- (d) $GM_{\mu}fg = (GM_{\mu}f)(GM_{\mu}g); GM_{\mu}\lambda f = \lambda GM_{\mu}f; GM_{\mu}(f+g) \ge GM_{\mu}f + GM_{\mu}g; GM_{\mu}f^{\lambda} = (GM_{\mu}f)^{\lambda}.$

The proofs are straightforward. For (b), because of the monotonicity of GM_{μ} , it suffices to consider the integrals of the functions in the decreasing sequence $\{\log(f+n^{-1}g)\}$ with pointwise limit $\log f$. If the sequence contains any non- μ -integrable member, or if the integrals are not bounded below, then $\log f$ is not μ -integrable. Otherwise, an application of the Beppo Levi Theorem [4, pp. 138, 149] yields the result. Since the second inequality of (c) and the superadditivity property in (d) are not quite obvious, a proof following that in [9, p. 138] is out-

lined. When $\mu(f) > 0$ and $\log f$ is μ -integrable, it follows from the positivity of μ and the inequality $\log \beta \le \beta - 1$ for positive real β , that

$$\begin{split} \int \log f d\mu &= \int \log (f/\mu(f)) \, d\mu \, + \, \log \int f d\mu \\ &\leq \int \left[(f/\mu(f)) - 1 \right] d\mu + \log \int f d\mu = \log \int f d\mu \, . \end{split}$$

For the remaining cases, note that, for positive λ , $GM_{\mu}(f+\lambda) \leq \mu(f+\lambda)$ and use (b) and the continuity of μ . To show the superadditivity of GM_{μ} , observe that when $f+g \in C^{\#}(E)$,

$$GM_u(f/(f+g)) + GM_u(g/(f+g)) \le \mu(f/(f+g)) + \mu(g/(f+g)) = 1;$$

when f + g has a zero, approximate to f by $f + \lambda$.

Finally, when μ_1 and μ_2 are probability measures on E and $\mu = \alpha \mu_1 + (1 - \alpha)\mu_2$ for $0 < \alpha < 1$, then, for each $f \in C^+(E)$,

$$GM_{u}f = (GM_{u}, f)^{\alpha} \cdot (GM_{u}, f)^{1-\alpha}$$
.

0.3. The theorem of Choquet and Deny. A subset P of C(E) is an upper semilattice iff, whenever $f, g \in P$, it is true that $f \cup g \in P$, where

$$(f \cup g)(\xi) \equiv \max \{f(\xi), g(\xi)\} \qquad (\xi \in E).$$

Let μ be a positive Radon measure on E and ξ be a point of E. Then the sets

$$U_{\mu,\xi} \equiv \{ f \colon f \in C(E), \ \mu(f) \ge f(\xi) \},$$

$$U_{\mu} \equiv \{ f \colon f \in C(E), \ \mu(f) \ge 0 \}$$

are both uniformly closed wedges which are upper semi-lattices. The following theorem states that every upper semi-lattice uniformly closed wedge is the intersection of wedges of the types $U_{\mu,\xi}$ and U_{μ} . Let δ_{ξ} denote the measure with all of its unit mass concentrated at the point ξ , and W' denote the dual wedge of all continuous real linear functionals taking non-negative values on the wedge W.

Theorem 0.1 (Choquet-Deny). Let W be a uniformly closed wedge contained in C(E) which is an upper semi-lattice. Suppose that \mathcal{U}_1 is the family of all pairs (μ, ξ) with $\xi \in E$ and μ a positive Radon measure such that $\mu(\{\xi\}) = 0$ and $\mu - \delta_{\xi} \in W'$; suppose that \mathcal{U}_2 is the family of all positive Radon measures μ such that $\mu \in W'$. Then:

$$W = \left(\bigcap_{(\mu,\xi) \in \mathcal{U}_1} U_{\mu,\xi}\right) \cap \left(\bigcap_{\mu \in \mathcal{U}_2} U_{\mu}\right).$$

For the proof, see [7]. The theorem is valid even if \mathcal{U}_1 is void and \mathcal{U}_2 consists of the zero measure alone. (The convention that a void intersection is the whole of the space is adopted.)

CHAPTER 1

1.1. The principal semi-algebra. Throughout this chapter, B is a real Banach algebra with multiplicative identity 1. Denote by G the set of regular elements of B. The space Φ_B^c of nontrivial complex homomorphisms on B is compact in the Gelfand topology; the family Φ_B of all nontrivial real homomorphisms is a closed subset of Φ_B^c . A nonvoid subset A of B is a semi-algebra iff

$$x, y \in A, \lambda \ge 0 \Rightarrow x + y, xy, \lambda x \in A$$
.

Denote by B^* the dual space consisting of all continuous real linear functionals on B, by A' the subset of those functionals in B^* taking non-negative values on A. Let R be the set of reals, R^+ the set of non-negative reals. The proof of the following theorem is similar to the proof of a theorem given by Kadison in [12, p. 8].

THEOREM 1.1. Let A be any closed subsemi-algebra of B whose interior contains 1. Then $A = \bigcap_{\phi \in \Psi_A} A_{\phi}$, where $\Psi_A \equiv \{\phi : \phi \in \Phi_B \cap A'\}$ and $A_{\phi} \equiv \{x : x \in B, \ \phi(x) \ge 0\}$.

Proof. Let $M = \{\mu : \mu \in A', \mu(1) = 1\}$. Then, because 0 is the only functional in A' which can vanish at the interior point 1, $A' = (\bigcup_{\lambda \ge 0} \lambda M)$. Note that $\Psi_A \subseteq M$.

Suppose that M is not void. Then M is convex and weak* closed. For some positive δ , A contains the open δ -ball with centre 1, so that M is contained in the closed δ^{-1} -ball with centre 0. Thus M is weak* compact. The Krein-Milman Theorem [8, p. 78] asserts that M possesses extreme points, of which it is the weak* closed convex hull. Let μ be one of these extreme points. If $u \in A$, $\|u\| < \delta$, $0 < \mu(u) < 1$ and $\mu_1(x) \equiv (\mu(u))^{-1}\mu(ux)$, $\mu_2(x) \equiv (\mu(1-u))^{-1}\mu(x-ux)$ ($\forall x \in B$), then $1 - u \in A$, μ_1 , $\mu_2 \in M$ and $\mu = \mu(u)\mu_1 + \mu(1-u)\mu_2$. Since μ is extreme, $\mu = \mu_1$ so that $\mu(u)\mu(x) = \mu(ux)$ ($\forall x \in B$). Evidently, this equation will hold for any element u of A. Since A has a nonvoid interior, B = A - A, so that μ is in fact a multiplicative functional, hence a member of Ψ_A . If $x \in \bigcap_{\phi \in \Psi_A} A_{\phi}$, then $\mu(x) \ge 0$ for each functional μ in A', so that, since A is closed, $x \in A$. (See [8, p. 22].) On the other hand, for any $x \in A$, clearly $x \in \bigcap_{\phi \in \Psi_A} A_{\phi}$.

If M is void, then Ψ_A is void and $A' = \{0\}$. If A were proper in B, it would be possible by Theorem 6 of [8, p. 22] to find a nontrivial functional in A'. Hence, in this case also, $A = B = \bigcap_{\phi \in \Psi_A} A_{\phi}$.

COROLLARY. Any closed subsemi-algebra of B whose interior contains 1 must contain $\bigcap_{\phi \in \Phi_B} A_{\phi}$. Thus $\bigcap_{\phi \in \Phi_B} A_{\phi}$ is the least closed semi-algebra containing 1 as interior point.

Proof. The first statement is clear. To see the second, observe that each A_{ϕ} contains the open unit ball with centre 1,

DEFINITION. The principal semi-algebra B_+ contained in B is the least closed semi-algebra containing 1 as an interior point.

The corollary asserts that B_+ certainly exists. One property of B_+ which will be used later is that, for each element u belonging to $G \cap B_+$, the inverse u^{-1} also belongs to B_+ .

1.2. Maximal closed subsemi-algebras of B_{+} .

DEFINITION. A closed subsemi-algebra of B_+ which is not properly contained in any proper closed subsemi-algebra of B_+ is said to be maximal closed in B_+ .

THEOREM 1.2. (i) If Φ_B is void or contains at least two elements, each maximal closed subsemi-algebra of B_+ contains the identity 1.

(ii) If Φ_B consists of the single element ϕ , then $\{x: x \in B_+, \phi(x) = 0\}$ is the unique maximal closed subsemi-algebra of B_+ which does not contain 1.

Before proving this theorem, we need some results about adjoining the identity to a subsemi-algebra A of B. Let

$$A_1 \equiv \{a + \alpha : a \in A, \alpha \ge 0\}.$$

LEMMA 1.1. If A is a closed subsemi-algebra of B, then A_1 is also a closed subsemi-algebra. Furthermore

$$A_1' = \{ \mu : \mu \in A', \ \mu(1) \ge 0 \}.$$

Proof. The result that A_1 is a semi-algebra and the equality for A_1' are straightforward. If $1 \in A$, then $A_1 = A$ is closed. Suppose that 1 does not belong to A and that z lies in the closure of A_1 . Then there exists a sequence $\{x_n + \alpha_n : x_n \in A, \ \alpha_n \in \mathbb{R}^+\}$ such that $\lim_{n \to \infty} (x_n + \alpha_n) = z$. If $\{\alpha_n\}$ has no convergent subsequence, then there is a subset D of the positive integers such that $\lim_{n \to \infty} (x_n + \alpha_n) = z$. Because $\|\alpha_n^{-1}x_n + 1\| \le \alpha_n^{-1} \|x_n + \alpha_n - z\| + \alpha_n^{-1} \|z\|$, it follows that $-1 = \lim_{n \to \infty} \{\alpha_n^{-1}x_n : n \to \infty, n \in D\}$, so that $-1 \in A$. But then $1 = (-1)^2 \in A$, giving a contradiction. Hence $\{\alpha_n\}$ has a convergent subsequence with non-negative limit α , say. It can be checked that $\{x_n\}$ has a corresponding subsequence with limit $z - \alpha$, which must lie in A. Thus $z = (z - \alpha) + \alpha \in A_1$, and A_1 is closed.

LEMMA 1.2. (i) If Φ_B is void, or contains at least two elements, then there is no proper closed subsemi-algebra A of B_+ with $A_1 = B_+$.

(ii) If Φ_B consists of the single element ϕ , then $A \equiv \{x : x \in B, \phi(x) = 0\}$ is the unique closed subsemi-algebra of B_+ with $A_1 = B_+$.

Proof. By Theorem 1.1, if Φ_B is void, then $B_+ = B$. If a closed semi-algebra A satisfies $A_1 = B_+ = B$, then $-1 = x + \alpha$ for some $x \in A$ and $\alpha \ge 0$, with the result that $1 = (1 + \alpha)^{-2}x^2 \in A$ and A = B. Now let Φ_B and A be as specified in (ii) and let $x \in B_+$. Since $x = (x - \phi(x)) + \phi(x)$, $x = x + \alpha$ belongs to $x = x + \alpha$.

If Φ_B is nonvoid, suppose that A is a proper closed subsemi-algebra of B_+ with $A_1 = B_+$. Then there exists a functional $\mu \in A'$ with $\mu(1) = -1$. Let $\phi \in \Phi_B$. Then $\mu + \phi \in A'$, $(\mu + \phi)(1) = 0$ so that $\mu + \phi$ is a functional in B'_+ vanishing at the interior point 1. Hence $\mu + \phi = 0$, i.e. $\phi = -\mu$. Thus Φ_B consists of a single element and μ is the sole functional in A' with $\mu(1) = -1$. It follows that

$$B'_{+} = \{\lambda \phi : \lambda \in \mathbf{R}^{+}\},$$

$$A' = \{\lambda \mu : \lambda \in \mathbf{R}^{+}\} \cup B'_{+} = \{\lambda \phi : \lambda \in \mathbf{R}\},$$

so that $A = \{x : x \in B, \ \phi(x) = 0\}.$

Proof of Theorem 1.2. If A is a maximal closed subsemi-algebra of B_+ , either $1 \in A$ or, A_1 being closed, $A_1 = B_+$. Lemma 1.2 shows that the only possibility for the latter case is that ϕ_B consists of a single element, Φ say, and that $A = \{x : x \in B, \ \phi(x) = 0\}$. Suppose this to be so; then we show that, for each $z \in B_+ \setminus A$, the least closed semi-algebra (A, z) containing A and the element z is in fact B_+ , so that A is indeed maximal. For, if $y \in B_+$, then $y - (\phi(y)/\phi(z))z \in A$, so that $y = [y - (\phi(y)/\phi(z))z] + [(\phi(y)/\phi(z))z] \in (A, z)$. Then $B_+ \subseteq (A, z)$, and the theorem follows.

REMARK. Case (ii) may actually occur; for example, $\{0\}$ is maximal closed in \mathbb{R}^+ . See also §1.4, Example 1.1.

THEOREM 1.3. Let A be a proper closed subsemi-algebra of B_+ which contains an interior point a. Then A is contained in a maximal closed subsemialgebra of B_+ .

Proof. It follows from Lemmata 1.1 and 1.2 that A_1 is also a proper closed subsemi-algebra of B_+ . Choose $\lambda > 0$ sufficiently large that $b = a + \lambda$ is regular. Since $\lambda \in A_1$ and $a \in \operatorname{int} A_1$, it follows that b is an interior point of A_1 . Choose an open neighborhood U of b which consists entirely of regular elements and is contained in A_1 .

Let P be any proper closed subsemi-algebra of B_+ which contains A_1 . Suppose, if possible, that $u \in U^{-1} \cap P$. Then $1 = uu^{-1} \in uU \subseteq \text{int } P$, so that $P = B_+$, contrary to assumption. Hence $U^{-1} \cap P = \emptyset$. Zorn's Lemma permits the choosing of a maximal chain (ordered by inclusion) of such semi-algebras P, and the closure of the union of the members of this chain is a maximal closed subsemialgebra of B_+ containing A_1 (and hence A), but not intersecting the open set U^{-1} .

1.3. Geometric semi-algebras. In this section, suppose that B is a real Banach algebra with $\Phi_B \neq \emptyset$.

DEFINITION. Let $\sigma \in B^*$. σ is a positive linear functional iff $\sigma(x) \ge 0$ ($\forall x \in B_+$). σ is a positive normalized linear functional (p.n.l.f.) iff σ is positive and satisfies $\sigma(1) = 1$.

Suppose Φ_B to have the Gelfand topology. For $x \in B$, the function f_x defined on Φ_B by

$$f_{\mathbf{x}}(\phi) = \phi(\mathbf{x}) \qquad (\forall \phi \in \Phi_{\mathbf{R}})$$

is continuous. The mapping $x \to f_x$ is a continuous homomorphism of B onto a uniformly dense subalgebra C_B of $C(\Phi_B)$. For a p.n.l.f. σ on B, define the functional $\bar{\sigma}$ on C_B by

$$\bar{\sigma}(f_x) = \sigma(x) \quad (\forall x \in B).$$

It is easily verified that, if $f_x = f_y$, then $\sigma(x) = \sigma(y)$, so that the definition is meaningful. The positivity of $\bar{\sigma}$ on $C_B \cap C^+(\Phi_B)$ means that $\bar{\sigma}$ can be uniquely extended to a Radon probability measure defined on the whole of $C(\Phi_B)$.

DEFINITION. Let σ be a p.n.l.f. on B; denote by $\bar{\sigma}$ the probability measure induced by σ on Φ_B . The functional γ_{σ} is defined for $x \in B_+$ by

$$\gamma_{\sigma}(x) = GM_{\bar{\sigma}}f_{x}$$
.

LEMMA 1.3. Let σ be a p.n.l.f. on B. For $x, y \in B_+$, $\lambda \ge 0$:

- (a) $0 \le \gamma_{\sigma}(x)$; $\gamma_{\sigma}(\lambda) = \lambda$;
- (b) $y x \in B_+ \Rightarrow \gamma_{\sigma}(x) \leq \gamma_{\sigma}(y)$;
- (c) $\lim_{\lambda \to 0^+} \gamma_{\sigma}(x + \lambda y) = \gamma_{\sigma}(x)$;
- (d) $0 \le \gamma_{\sigma}(x) \le \sigma(x) \le ||x||$;
- (e) $\gamma_{\sigma}(xy) = \gamma_{\sigma}(x)\gamma_{\sigma}(y)$;
- (f) $\gamma_{\sigma}(x+y) \ge \gamma_{\sigma}(x) + \gamma_{\sigma}(y)$;
- (g) $\gamma_{\sigma}(\lambda x) = \lambda \gamma_{\sigma}(x)$;
- (h) if $x \in G$, then $\gamma_{\sigma}(x^{-1}) = (\gamma_{\sigma}(x))^{-1}$.

For $\phi \in \Phi_R$, it is true that $\gamma_{\phi}(x) = \phi(x)$.

Let σ_1 and σ_2 be two p.n.l.f.'s on B and suppose that $\sigma = \alpha \sigma_1 + (1 - \alpha)\sigma_2$ $(0 < \alpha < 1)$. Then $\gamma_{\sigma}(x) = (\gamma_{\sigma_1}(x))^{\alpha}(\gamma_{\sigma_2}(x))^{1-\alpha}$ for all $x \in B_+$.

Proof. These properties are consequences of the corresponding properties of $GM_{\bar{\sigma}}$ given in $\S 0.2$ and the homomorphic character of the mapping $x \to f_x$. For example, (b) is proved by the following chain of implications:

$$y - x \in B_{+} \Rightarrow (f_{y} - f_{x})(\phi) = (f_{y-x})(\phi) \ge 0 \qquad (\forall \phi \in \Phi_{B})$$
$$\Rightarrow f_{y} \ge f_{x} \Rightarrow \gamma_{\sigma}(y) = GM_{\bar{\sigma}}f_{y} \ge GM_{\bar{\sigma}}f_{x} = \gamma_{\sigma}(x).$$

LEMMA 1.4. Let σ be a p.n.l.f. on B. Then γ_{σ} is continuous on the interior of B_+ ; in particular, γ_{σ} is continuous on $G \cap B_+$.

Proof. Note that $x \to \gamma_{\sigma}(x)$ is the composition of the continuous mappings $x \to f_x$ (of int B_+ into $C^{\#}(\Phi_B)$), $f \to \log f$ (of $C^{\#}(\Phi_B)$ into $C(\Phi_B)$), $f \to \bar{\sigma}(f)$ (of $C(\Phi_B)$ into R), $t \to e^t$ (of R into R^+).

THEOREM 1.4. Let σ be a p.n.l.f. on B and let $\psi \in \Phi_B$. Define:

$$H_{\sigma, \psi} \equiv \{x : x \in B_+, \ \psi(x) \leq \gamma_{\sigma}(x)\}.$$

If $\sigma = \psi$, then $H_{\sigma,\psi} = B_+$. If $\sigma \neq \psi$, then $H_{\sigma,\psi}$ is a proper closed subsemi-algebra of B_+ which contains the identity.

Proof. If $\sigma = \psi$, then $\gamma_{\sigma} = \psi$, by Lemma 1.3, so that the first statement is true. Henceforth, assume that $\sigma \neq \psi$. If $H_{\sigma,\psi}$ were not proper in this case, then $\psi(x) \leq \gamma_{\sigma}(x)$ for each $x \in B_+$, whereupon $(\log f)(\psi) \leq \bar{\sigma}(\log f)$ for each function f in $C^*(\Phi_B) \subseteq \operatorname{Cl}(C_B \cap C^*(\Phi_B))$, and $f(\psi) \leq \bar{\sigma}(f)$ for each function f in $C(\Phi_B)$. Since $C(\Phi_B)$ is closed under the taking of additive inverses, it follows that $f(\psi) = \bar{\sigma}(f)$ ($\forall f \in C(\Phi_B)$), and a contradiction is obtained.

The properties of the functional γ_{σ} listed in Lemma 1.3 can be used to show that $H_{\sigma,\psi}$ is a semi-algebra containing the identity. Suppose that y belongs to the closure of $H_{\sigma,\psi}$. Then there exists a sequence $\{y_n\}$ such that $y_n \in H_{\sigma,\psi}$ and $\|y-y_n\| < n^{-1}$ for each positive integer n. Therefore $|\phi(y-y_n)| < n^{-1}$, so that

$$\phi(v - (1/n)) < \phi(v_n) < \phi(v + (1/n))$$

for each $\phi \in \Phi_B$, each positive integer n. Since $\phi(y + (1/n) - y_n) > 0$ ($\forall \phi \in \Phi_B$), it is true that $y + (1/n) - y_n \in B_+$, so that, by Lemma 1.3(b), $\gamma_{\sigma}(y_n) \leq \gamma_{\sigma}(y + (1/n))$. Hence:

$$\psi(y - (1/n)) \le \psi(y_n) \le \gamma_{\sigma}(y_n) \le \gamma_{\sigma}(y + (1/n))$$

for each positive integer n. Letting n tend to infinity and making use of Lemma 1.3(c), we obtain that $\psi(y) \leq \gamma_{\sigma}(y)$, so that $y \in H_{\sigma,\psi}$. Thus, $H_{\sigma,\psi}$ is closed and the proof is complete.

DEFINITION. A geometric semi-algebra contained in B_+ is a semi-algebra of the form $H_{\sigma,\psi}$ where σ is a p.n.l.f. on B and $\psi \in \Phi_B$. It is implicit in the definition that $\sigma \neq \psi$.

For any geometric semi-algebra, it can always be arranged that the p.n.l.f. involved in the definition is not a nontrivial convex combination of the homomorphism involved and another p.n.l.f. For, if $\sigma = \alpha \psi + (1-\alpha)\omega$ where $0 < \alpha < 1$ and ω is a p.n.l.f., then, by the final part of Lemma 1.3, $H_{\sigma,\psi} = H_{\omega,\psi}$. The remainder of this section will be devoted to showing that the geometric semi-algebras are maximal closed subsemi-algebras of the principal semi-algebra. For H a closed subsemi-algebra of B_+ and v an element of B_+ , the least closed subsemi-algebra of B_+ containing H and the element v will be denoted by (H,v). The maximality of H is equivalent to the property that $(H,v) = B_+$ whenever $v \in B_+ \setminus H$.

LEMMA 1.5. Let $H_{\sigma,\psi}$ be a geometric semi-algebra contained in B_+ . If u is an element of B_+ belonging to $G \setminus H_{\sigma,\psi}$, then $(H_{\sigma,\psi}, u) = B_+$.

Proof. It can be seen that $\gamma_{\sigma}(u^{-1}) > \psi(u^{-1})$, so that by the continuity of γ_{σ} and ψ on $B_{+} \cap G$, there exists a neighbourhood V of u^{-1} contained in $H_{\sigma,\psi}$. Then uV is a neighbourhood of 1 contained in $(H_{\sigma,\psi},u)$, and the result follows by the definition of B_{+} .

LEMMA 1.6. Let $H_{\sigma,\psi}$ be a geometric semi-algebra contained in B_+ . If $v \in B_+$ and $\psi(v) > \sigma(v)$, then $(H_{\sigma,\psi}, v) = B_+$.

Proof. Choose $\lambda \in (0,1]$ such that $\lambda < (\|1-v\|)^{-1}$. Then $u = \lambda v + (1-\lambda)$ satisfies the conditions of Lemma 1.5. Hence $B_+ = (H_{\sigma,\psi}, u) \subseteq (H_{\sigma,\psi}, v) \subseteq B_+$.

LEMMA 1.7. Let $H_{\sigma,\psi}$ be a geometric semi-algebra contained in B_+ . If $v \in B_+ \setminus H_{\sigma,\psi}$, and if $\psi(v) \leq \sigma(v)$, then $(H_{\sigma,\psi},v) = B_+$.

Proof. Choose a positive real λ sufficiently small that $u=v+\lambda$ does not belong to $H_{\sigma,\psi}$. Then f_u is a regular element of $C^+(\Phi_B)$ and $(f_u)(\psi)=\psi(u)>\gamma_\sigma(u)=GM_{\overline{\sigma}}f_u$, so that $(f_u)^{-1}(\psi)< GM_{\overline{\sigma}}(f_u)^{-1}$ for the multiplicative inverse of f_u . Choose a uniform neighbourhood V of f_u^{-1} with $V\subseteq C^*(\Phi_B)$ and $f(\psi)< GM_{\overline{\sigma}}f(\psi)$. Since $C_B\cap C^+(\Phi_B)$ is uniformly dense in $C^+(\Phi_B)$, it is possible to find in V a function f_z , for some $z\in B_+$, such that $(f_uf_z)(\psi)-\overline{\sigma}(f_uf_z)>0$. (Note that f_u^{-1} lies in the proper closed hyperplane $\{f:f\in C(\Phi_B),(f_uf)(\psi)-\overline{\sigma}(f_uf)=0\}$.) Then $z\in H_{\sigma,\psi}$ and $\psi(uz)>\sigma(uz)$. Hence, $uz\in (H_{\sigma,\psi},u)$ and, by Lemma 1.6,

$$B_+ = (H_{\sigma,\psi}, uz) \subseteq (H_{\sigma,\psi}, u) \subseteq (H_{\sigma,\psi}, v) \subseteq B_+$$

Combining Lemmata 1.6 and 1.7, and noting that for distinct elements ψ_1 and ψ_2 in Φ_B , H_{ψ_1,ψ_2} is a geometric semi-algebra, we obtain the following result:

THEOREM 1.5. Let B be a real Banach algebra with identity such that Φ_B possesses at least two elements. Then B_+ contains geometric semi-algebras and each such semi-algebra is a maximal closed subsemi-algebra of B_+ .

REMARK. If Φ_B has a single element, then this element is the only p.n.l.f.

1.4. Other examples of maximal closed subsemi-algebras. In general, not every maximal closed subsemi-algebra of the principal semi-algebra of a Banach algebra is geometric. This section indicates other possibilities.

Theorem 1.6. Let ψ be a complex homomorphism on B not contained in Φ_B . Then

$$K_{\psi} \equiv \{x : x \in B_+, \ \psi(x) \ is \ real\}$$

is a maximal closed subsemi-algebra of B₊.

Proof. Evidently K_{ψ} is a proper closed subsemi-algebra of B_{+} which contains the identity. For $u \in B_{+} \setminus K_{\psi}$, let (K_{ψ}, u) be the least closed semi-algebra

containing K_{ψ} and u, and suppose that $\psi(u) = \lambda e^{i\theta}$. Note that θ is not an integral multiple of π .

Suppose $v \in B_+$ and that $\psi(v) = \alpha e^{i\omega}$. If ω is an integral multiple of π , then $v \in K_{\psi}$. If ω is not an integral multiple of π , then positive real β and ρ , and a positive integer m can be chosen so that $\lambda e^{i\theta} + \beta = \rho e^{i\omega/m}$ (for ω suitably modified if necessary) and $u + \beta$ is regular. It can be checked that $u + \beta \in (K_{\psi}, u)$ and that $v(u + \beta)^{-m} \in K_{\psi} \subseteq (K_{\psi}, u)$. Hence $v = v(u + \beta)^{-m}(u + \beta)^{m} \in (K_{\psi}, u)$. The required result follows.

REMARK. A semi-algebra of the form K_{ψ} may certainly be strict (i.e. $x, -x \in K_{\psi} \Rightarrow x = 0$). For, if B be the real Banach algebra of functions continuous on the closed unit disc, analytic on its interior and taking real values on the real axis, then B_+ , and, a fortiori, the K_{ψ} (corresponding to points of the disc not on the real axis) are strict.

The sort of situation which may occur even when there are no strictly complex homomorphisms on B is illustrated by two examples.

EXAMPLE 1.1. Let $K^{(2)}$ be the set of all real triples $x \equiv (x_0, x_1, x_2)$ with the norm and algebraic operations defined by:

$$||x|| = \sum_{i=0}^{2} |x_i|,$$

$$(x+y)_i = x_i + y_i,$$

$$(xy)_i = \sum_{j=0}^{i} x_j y_{i-j}, \qquad i = 0, 1, 2$$

$$(\lambda x)_i = \lambda x_i$$

for elements x and y, and real λ . The multiplicative identity is the element $1 \equiv (1,0,0)$. Since $\Phi_{K^{(2)}}$ consists of the single homomorphism $x \to x_0$, the princinal semi-algebra $K_+^{(2)}$ is the set $\{x \colon x \in K^{(2)}, x_0 \ge 0\}$.

Define the sets:

$$P \equiv \{x \colon x \in K_{+}^{(2)}, x_{1} \ge 0\},\$$

$$Q \equiv \{x \colon x \in K_{+}^{(2)}, x_{1} \le 0\},\$$

$$R \equiv \{x \colon x \in K_{+}^{(2)}, x_{0} = 0\},\$$

$$S_{\ell} \equiv \{x \colon x \in K_{+}^{(2)}; 2x_{0}x_{2} - x_{1}^{2} \ge \beta x_{0}x_{1}; x_{1} = 0, x_{2} \ge 0 \text{ when } x_{0} = 0\},\$$

where β is a real number. Each of these sets is a maximal closed subsemi-algebra of $K_+^{(2)}$. The maximality of R is a consequence of Theorem 1.2. The maximality of the others can be proved by an argument similar to that used for geometric semi-algebras.

Example 1.2. Let $C^{(2)}[0,1]$ be the Banach algebra of all real-valued continuous twice continuously differentiable functions defined on the closed unit

interval, with the algebraic operations defined pointwise and the norm $\|\cdot\|$ given by $\|f\| \equiv \sup\{|f(t)| + |f'(t)| + \frac{1}{2}|f''(t)| : 0 \le t \le 1\}$ for any member f. The principal semi-algebra $C_+^{(2)}[0,1]$ is precisely the set of functions which take only non-negative values.

For s a fixed point of [0,1], β some real number and α some nonpositive real number, define the linear functional ρ on $C^{(2)}[0,1]$ by

$$\rho(g) \equiv g(s) + \beta g'(s) + \alpha g''(s) \qquad (\forall g \in C^{(2)}[0,1]).$$

The functional ρ can be extended in an obvious manner so that when $f \in C_+^{(2)}[0,1]$ and f(s) > 0, $\log f$ exists in a neighbourhood of s and $\rho(\log f)$ is defined. Define τ_a for $f \in C_+^{(2)}[0,1]$ by

$$\tau_{\rho}(f) \equiv \begin{cases} \exp \rho(\log f) & \text{whenever } f(s) > 0 \\ \lim_{\lambda \to 0^{+}} \tau_{\rho}(f + \lambda) & \text{whenever } f(s) = 0 \end{cases}$$

 τ_{ρ} may be positively infinite when f(s) = 0. Leaving the products $\infty \cdot \infty$ and $0 \cdot \infty$ undefined and using the usual conventions otherwise in dealing with infinity, we can show that, for $f, g \in C_+^{(2)}[0,1]$:

$$0 \le \tau_{\rho}(f); \ \tau_{\rho}(f+g) \le \tau_{\rho}(f) + \tau_{\rho}(g);$$

$$\tau_{\rho}(\lambda) = \lambda, \ \tau_{\rho}(\lambda f) = \lambda \tau_{\rho}(f) \ (\forall \lambda \ge 0);$$

$$\tau_{\rho}(fg) = \tau_{\rho}(f) \tau_{\rho}(g),$$

whenever the latter product is defined. For σ a p.n.l.f. on $C^{(2)}[0,1]$ not equal to ρ , define the set

$$H_{\sigma,\rho} \equiv \{f \in C^{(2)}_+[0,1], \quad \tau_\rho(f) \le \gamma_\sigma(f)\}.$$

 $H_{\sigma,\rho}$ is a maximal closed subsemi-algebra of $C_+^{(2)}[0, 1]$.

CHAPTER 2

2.1. Intersections of geometric semi-algebras contained in $C^+(E)$. In this section a characterization of those subsemi-algebras of $C^+(E)$ which are the intersections of families of geometric semi-algebras will be given. Define:

$$H_{\sigma,\xi} \equiv \{f: f \in C^+(E), f(\xi) \leq GM_{\sigma}f\}$$

for a point ξ in E and a probability measure σ on E. Since every homomorphism of C(E) into the real numbers arises from a point of E, each geometric semi-algebra has the form $H_{\sigma,\xi}$.

DEFINITION. A subset S of $C^+(E)$ is power closed iff, for each positive real λ , S contains, along with any member f, the function f^{λ} , defined for $\xi \in E$ by

$$f^{\lambda}(\xi) \equiv \text{principal value } (f(\xi))^{\lambda}.$$

A uniformly closed power closed subsemi-algebra of $C^+(E)$ is called a cornet.

Any geometric semi-algebra is a cornet with identity. Further, since for f, $g \in C^+(E)$, $\lim_{n\to\infty} (f^n + g^n)^{1/n} = f \cup g$, each cornet is an upper semi-lattice. (The term "lim" refers to the taking of the uniform limit.)

THEOREM 2.1. Let P be a uniformly closed subset of $C^+(E)$ which satisfies the conditions:

- (i) P is closed under multiplication;
- (ii) $\lambda P \subseteq P$ for each positive real λ ;
- (iii) P is an upper semi-lattice;
- (iv) P is power closed;
- (v) P contains the identity function 1.

Let \mathscr{F} be the set of all pairs (σ, ξ) with σ a probability measure and ξ a point of E, such that $P \subseteq H_{\sigma, \xi}$. Then:

$$P = \bigcap_{(\sigma, \xi) \in \mathscr{F}} H_{\sigma, \xi}.$$

REMARK. It is not stipulated that P is closed under addition. This more general form of the theorem will be useful later. The theorem is valid even when \mathcal{F} is void.

Proof. Let $P^* = P \cap C^*(E)$. Then, since $f \cup \varepsilon \in P^*$ for $f \in P$ and $\varepsilon > 0$, P is the uniform closure of P^* . The set $W \equiv \log P^*$ is a closed wedge in C(E) which is an upper semi-lattice. Let \mathscr{U}_1 and \mathscr{U}_2 be defined with respect to W as in Theorem 0.1. Because the functions 1 and -1 belong to W, \mathscr{U}_2 consists of the zero measure alone and, for each $(\sigma, \xi) \in \mathscr{U}_1$, σ is a probability measure.

By Theorem 0.1, $W = \bigcap_{(\sigma,\xi) \in \mathscr{U}_1} U_{\sigma,\xi}$, so that $P^* = (\bigcap_{(\sigma,\xi) \in \mathscr{U}_1} H_{\sigma,\xi}) \bigcap C^*(E)$. It is straightforward to show that $P = \bigcap_{(\sigma,\xi) \in \mathscr{U}_1} H_{\sigma,\xi}$. Finally, noting that $\mathscr{U}_1 \subseteq \mathscr{F}$ and that $P \subseteq H_{\sigma,\xi}$ for $(\sigma,\xi) \in \mathscr{F}$, we obtain that $P = \bigcap_{(\sigma,\xi) \in \mathscr{U}_1} H_{\sigma,\xi}$ $\supseteq \bigcap_{(\sigma,\xi) \in \mathscr{F}} H_{\sigma,\xi} \supseteq P$.

COROLLARY 1. The set P described in the theorem is a semi-algebra (and hence a cornet).

COROLLARY 2. Let A be a cornet with identity, \mathscr{F} be the set of all pairs (σ, ξ) with σ a probability measure, ξ a point of E, such that $A \subseteq H_{\sigma,\xi}$. Then $A = \bigcap_{(\sigma,\xi) \in \mathscr{F}} H_{\sigma,\xi}$.

The next result is a useful application of Theorem 2.1. For a subsemi-algebra A of C(E), define the subset of E:

$$N(A) \equiv \{ \eta : \eta \in E, f(\eta) = 0 \quad (\forall f \in A) \}.$$

THEOREM 2.2. Let A be a uniformly closed subsemi-algebra of $C^+(E)$ with N(A) void. Define:

 $P_A \equiv \{f: f \in C^+(E), f^n \in A \text{ for some positive integer } n \equiv n(f)\}$ $\sqrt{A} \equiv \bar{P}_A$, the uniform closure of P_A .

Then \sqrt{A} is the least cornet containing A.

- **Proof.** Clearly, any cornet containing A must contain \sqrt{A} . It remains only to show that \sqrt{A} is a cornet. We show that \sqrt{A} satisfies the five conditions of Theorem 2.1 and apply Corollary 1.
- (i) Evidently, P_A is closed under multiplication; hence, the closure of P_A is also.
- (ii) P_A , and hence its closure, is closed under multiplication by non-negative scalars.
- (iii) Let f, $g \in P_A$. Choose positive integers m, n such that f^m and g^n belong to A. Then for every positive integer k, $f^{mnk} + g^{mnk} \in A$, so that $(f^{mnk} + g^{mnk})^{1/mnk} \in P_A$. Then (letting k tend to infinity) we see that $f \cup g \in \sqrt{A}$. If f and g are functions in \sqrt{A} , then there exist sequences $\{f_n\}$ and $\{g_n\}$ contained in P_A with limits f and g respectively. Since, for each positive integer n, $f_n \cup g_n \in \sqrt{A}$, then $f \cup g = \lim_{n \to \infty} (f_n \cup g_n) \in \sqrt{A}$.
- (iv) If $f \in P_A$, then for any pair p, q of positive integers $f^{p/q} \in P_A$. Then, for each positive real $\lambda, f^{\lambda} \in \sqrt{A}$. If $f \in \sqrt{A}, f^{\lambda}$ can be approximated by a sequence $\{f_n^{\lambda}: f_n \in P_A\}$, so that $f^{\lambda} \in \sqrt{A}$.
- (v) For each point ξ in E, there exists a function $f_{\xi} \in A$ such that f_{ξ} is positive on a neighbourhood of ξ . Because of the compactness of E, it is possible to find a finite set of such functions f_{ξ} whose sum f is an everywhere positive function belonging to A. Then $1 = \lim_{\lambda \to 0^+} f^{\lambda} \in \sqrt{A}$.

The theorem now follows.

So far, the theorems of this section have given information only about cornets which contain the identity. Let A now be an arbitrary cornet, and denote by A_c the least *cornet* which contains A along with the identity function 1. Observe that $A = A_c$ if and only if $1 \in A$, and if and only if the set N(A) is void. Note also that A_c will not in general be the same as the semi-algebra A_1 defined in §1.2. The investigation of cornets without the identity involves the following lemma.

LEMMA 2.1. Let f,g be two functions in $C^+(E)$ and let β, ε be positive real numbers. Suppose that for some point η in E, $f(\eta) = 0$, and that for some positive integer n, $||f - (g + \beta)^{1/n}|| < \frac{1}{2}\varepsilon$. Then $||f - g^{1/n}|| < \varepsilon$.

Proof. Clearly $0 < \beta \le g(\eta) + \beta < (\frac{1}{2}\varepsilon)^n$. Since $(t+\beta)^{1/n} - t^{1/n}$ is decreasing for non-negative values of t, it follows that for each point ξ in E,

$$0 \le (g+\beta)^{1/n}(\xi) - g^{1/n}(\xi) \le \beta^{1/n} < \frac{1}{2}\varepsilon.$$

Thus,

$$||f - g^{1/n}|| \le ||f - (g + \beta)^{1/n}|| + ||(g + \beta)^{1/n} - g^{1/n}|| < \varepsilon.$$

There is a very simple relationship between the cornets A and A_c . In fact, we show that

$$A = \{f: f \in A_c, f(\eta) = 0 \ (\forall \eta \in N(A))\}.$$

This is true if $N(A) = \emptyset$. Suppose henceforth that $N(A) \neq \emptyset$. Evidently, A is contained in the right-hand side. Since A_c is the least cornet containing the closed semi-algebra A_1 , it follows from Theorem 2.2 that $A_c = \sqrt{A_1}$. Suppose that the function f belongs to A_c and vanishes on N(A). For given positive ε , there exists a function $g \in A$, a positive real β and a positive integer n such that $\|f - (g + \beta)^{1/n}\| < \frac{1}{2}\varepsilon$. Since f vanishes on the nonvoid set N(A), Lemma 2.1 shows that $\|f - g^{1/n}\| < \varepsilon$. Because A is a cornet containing g, A contains $g^{1/n}$: let $f_{\varepsilon} = g^{1/n}$. It is concluded that for any function f in A_c vanishing on N(A), there exists a function f_{ε} in A with $\|f_{\varepsilon} - f\| < \varepsilon$; hence $f \in A$.

The connection between A and A leads directly to the following result.

THEOREM 2.3. Let A be a cornet. Suppose that \mathscr{F} is the set of pairs (σ, ξ) with σ a probability measure on E and ξ a point of E, such that $A \subseteq H_{\sigma,\xi}$. Then

$$A = \{ f : f \in H_{\sigma, \mathcal{E}} \ (\forall (\sigma, \xi) \in \mathscr{F}), \ f(\eta) = 0 \ (\forall \eta \in N(A)) \}.$$

THEOREM 2.4. Let A be a uniformly closed subsemi-algebra of $C^+(E)$. Define \sqrt{A} exactly as in Theorem 2.2. Then \sqrt{A} is the least cornet containing A.

Proof. Only the case $N(A) \neq \emptyset$ is to be considered. The arguments used in Theorem 2.2 apply here to show that \sqrt{A} is closed under multiplication, $\lambda \sqrt{A} \subseteq \sqrt{A}$ and \sqrt{A} is power closed. It remains to be verified that \sqrt{A} is closed under addition.

 \sqrt{A} is contained in $\sqrt{A_1}$, which, by Theorem 2.2, is known to be a semi-algebra. Therefore, if f, $g \in \sqrt{A}$, then $f + g \in \sqrt{A_1}$. By the definition of $\sqrt{A_1}$, for given positive ε , there exists $h \in A$, $\alpha > 0$, a positive integer n, with $\|(f+g) - (h+\alpha)^{1/n}\| < \frac{1}{2}\varepsilon$. Since $N(A) = N(\sqrt{A})$, f, g and f+g all vanish on N(A). By Lemma 2.1, $\|(f+g) - h^{1/n}\| < \varepsilon$. Thus, f+g can be uniformly approximated by integral roots of elements of A, so that $f+g \in \sqrt{A}$. Hence \sqrt{A} is a cornet, and the theorem follows.

2.2. Every maximal closed subsemi-algebra of $C^+(E)$ is geometric. Let μ and ν be two Radon measures on E. Following F. Riesz (see [14] or [3]), define for $f \in C^+(E)$ the functional

$$\sigma(f) \equiv \sup \left\{ \mu(g) + \nu(f - g) \colon 0 \le g \le f, \ g \in C^+(E) \right\}.$$

This functional is linear and continuous on $C^+(E)$, and can be extended uniquely to a Radon measure, which is denoted by $\mu \cup \nu$. Define: $\mu_+ \equiv \mu \cup 0$, $\mu_- \equiv (-\mu) \cup 0$. Then μ_+ and μ_- are positive Radon measures and $\mu = \mu_+ - \mu_-$. For $f \in C(E)$, the Radon measure $f \cdot \mu$ is defined by $(f \cdot \mu)(g) \equiv \mu(fg)$ ($\forall g \in C(E)$).

If K_1 and K_2 are two subcones of $C^+(E)$ and $\mu_1 \in K'_1$, $\mu_2 \in K'_2$, then $\mu_1 \cup \mu_2 \in (Cl(K_1 + K_2))'$.

LEMMA 2.2. Let f be a function in $C^+(E)$, and δ a real number such that $0 < \delta < f(\xi) < 1$ ($\forall \xi \in E$). Suppose that μ is a Radon measure on E

Then $(f \cdot \mu) \cup \mu$ is a positive measure if and only if μ is a positive measure.

Proof. The positivity of μ implies that of $f \cdot \mu$, and hence that of $(f \cdot \mu) \cup \mu$. Suppose that μ is not positive. Then μ_- is nontrivial, so that a function $h \in C^+(E)$ can be found to satisfy

$$0 < \mu(-h) \le \mu_{-}(h) \le (1-\delta)^{-1}\mu(-h)$$
.

Then

$$((f \cdot \mu) \cup \mu)(h) = \sup \{ (f \cdot \mu)(g) + \mu(h - g) \colon 0 \le g \le h \}$$

$$= \mu(h) + \sup \{ \mu(-(1 - f)g) \colon 0 \le g \le h \}$$

$$\le -(1 - \delta)\mu_{-}(h) + \mu_{-}((1 - f)h)$$

$$= \mu_{-}((\delta - f)h) < 0.$$

so that $(f \cdot \mu) \cup \mu$ is not positive.

LEMMA 2.3. Let A be a proper uniformly closed subsemi-algebra of $C^+(E)$. Suppose the function f in $C^+(E)$ is such that

- (i) for some real δ , $0 < \delta < f(\xi) < 1$ ($\forall \xi \in E$);
- (ii) f^2 belongs to A.

Then (A,f), the least closed semi-algebra containing A and the function f is also proper in $C^+(E)$.

Proof. If $f \in A$, the result is obvious. Suppose then that $f \notin A$. Since A is proper, there exists a nonpositive Radon measure μ belonging to A'. Then $f \cdot \mu$ belongs to (Af)'. Hence $(f \cdot \mu) \cup \mu$ is a nonpositive Radon measure in $(\operatorname{Cl}(A+Af))'$, so that the cone $\operatorname{Cl}(A+Af)$ is a proper cone of $C^+(E)$. Now A+Af is a semi-algebra contained in every closed semi-algebra containing A and the function f. Hence $\operatorname{Cl}(A+Af)=(A,f)$ and the lemma follows.

THEOREM 2.5. Let A be a maximal closed subsemi-algebra of $C^+(E)$. Then A is power closed. If E contains at least two distinct points, then each maximal closed subsemi-algebra of $C^+(E)$ is a geometric semi-algebra.

Proof. If E consists of a single point, then $C^+(E)$ is isomorphic to the semi-algebra of non-negative reals, so that the only proper closed subsemi-algebra of $C^+(E)$ is $\{0\}$, and this is power closed.

If E consists of more than one point, then the maximality of A implies, by Theorem 1.2, that $1 \in A$. Let g be an element of A which is bounded away from zero. Define

$$f \equiv (2 \| g^{1/2} \|)^{-1} g^{1/2}; \ \delta \equiv \inf \{ (3 \| g^{1/2} \|)^{-1} g^{1/2}(\xi) \colon \xi \in E \}.$$

Then f and δ satisfy the conditions of Lemma 2.3, so that, by the maximality of

A, (A, f) = A. Hence $g^{1/2} = 2 \| g^{1/2} \| f \in A$. Similarly, it can be shown in turn that $g^{1/4}, g^{1/8}, \cdots$ all belong to A. Since any positive real λ can be approximated by the sum of an integer and various powers of $\frac{1}{2}$, and since A is closed, it follows that $g^{\lambda} \in A \ (\forall \lambda > 0)$. If, now, h is any element in A, then for each positive integer n, $(h + n^{-1}) \in A \cap C^*(E)$, so that $(h + n^{-1})^{\lambda} \in A \ (\forall \lambda > 0)$. Taking the limit as $n \to \infty$, we see that $h \in A$. Thus A is a cornet, and, being maximal, must, by Theorem 2.1 Corollary 2, be geometric.

REFERENCES

- 1. F. F. Bonsall, Semi-algebras of continuous functions, Proc. Internat. Sympos. Linear Spaces, Jerusalem, 1960, 101-114.
- 2. ——, Algebraic properties of some convex cones of functions, Quart. J. Math. Oxford Ser. (2) 14 (1963), 225-230.
 - 3. ——, Locally compact semi-algebras Proc., London Math. Soc. (3) 13 (1963), 51-70.
- 4. N. Bourbaki, Intégration, Chapters I-IV, Actualités Sci. Ind. No. 1175, Hermann, Paris, 1952.
- 5. D. G. Bourgin, Multiplicative transformations, Proc. Nat. Acad. Sci. U.S.A. 36 (1950), 564-570.
 - 6. S. Bourne, On normed semi-algebras, Studia Math. 21 (1961), 45-54.
- 7. G. Choquet and J. Deny, Ensembles semi-réticulés et ensembles réticulés de fonctions continues. J. Math. Pures Appl. 36 (1957), 179-189.
 - 8. M. M. Day, Normed linear spaces, (reprint), Springer, Berlin, 1962.
- 9. G. H. Hardy, J. E. Littlewood and G. Pólya, *Inequalities*, Cambridge Univ. Press, New York, 1934.
- 10. K. Hoffman and I. M. Singer, Maximal algebras of continuous functions, Acta Math. 103 (1960), 217-241.
- 11. W. B. Jurkat and G. G. Lorentz, Uniform approximation by polynomials with positive coefficients, Duke Math. J. 28 (1961), 463-473.
- 12. R. V. Kadison, A representation theory for commutative topological algebra, Mem. Amer. Math. Soc. No. 7 (1951), 39 pp.
- 13. J. F. C. Kingman, A convexity property of positive matrices, Quart. J. Math. Oxford Ser. (2) 12 (1961), 283-284.
- 14. F. Riesz, Sur quelques notions fondamentales dans la théorie générale des opérations linéaires, Ann. of Math. 41 (1940), 175-206.

THE UNIVERSITY,
NEWCASTLE-UPON-TYNE, ENGLAND
THE UNIVERSITY OF WESTERN ONTARIO,
LONDON, CANADA